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Abstract
Byte addressable non-volatile memory (NVRAM) is likely to
supplement, and perhaps eventually replace, DRAM. Appli-
cations can then persist data structures directly in memory
instead of serializing them and storing them onto a durable
block device. However, failures during execution can leave
data structures in NVRAM unreachable or corrupt. In this pa-
per, we present Makalu, a system that addresses non-volatile
memory management. Makalu offers an integrated allocator
and recovery-time garbage collector that maintains internal
consistency, avoids NVRAM memory leaks, and is efficient, all
in the face of failures.

We show that a careful allocator design can support a less
restrictive and a much more familiar programming model
than existing persistent memory allocators. Our allocator
significantly reduces the per allocation persistence overhead
by lazily persisting non-essential metadata and by employ-
ing a post-failure recovery-time garbage collector. Experi-
mental results show that the resulting online speed and scal-
ability of our allocator are comparable to well-known tran-
sient allocators, and significantly better than state-of-the-art
persistent allocators.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors; D.4.2 [Operating Systems]: Stor-
age Management; D.4.5 [Operating Systems]: Reliability

General Terms Languages, Performance, Reliability

Keywords non-volatile memory, persistent memory man-
agement, allocation, deallocation, garbage collection
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1. Introduction
Limitations in current DRAM technology scaling [4, 30]
have prompted research in alternate memory technologies.
Almost all alternatives being explored such as Memris-
tor [38], Phase Change Memory (PCM) [29, 34], and 3D
XPoint [33] are non-volatile in nature. Such non-volatile
memory (NVRAM) combines the byte-addressability of DRAM
with the persistence of hard disks. In the near future, NVRAM
may at least partially replace DRAM, making persistent data
accessible through CPU load and store instructions. With
NVRAM, persistent data can be manipulated in the same for-
mat as stored, thus requiring no expensive and cumbersome
conversion.

NVRAM opens up an opportunity to have in-memory object
persistence so that program states that outlive the creating
process can be preserved, shared, and reused [14, 15, 39].
Using this persist-and-reuse model, a quick restart of an ap-
plication from an intermediate state appears a reality. While
starting, an application looks for existing data that it can
reuse. If present, the application adjusts its context and in-
stead of computing from scratch, merely reuses the existing
data for the rest of its computation.

Recently, a lot of work has gone into failure-resilience
of persistent data [2, 3, 5, 14, 15, 39]. Persistent data must
be updated with great care so as to be reusable. Otherwise
updates may become visible to NVRAM only partially, or not
in the intended order. This may happen as a result of failures
in the middle of critical sections, volatile CPU caches, or
out-of-order cache evictions. As a result, an interruption
such as a power failure may introduce inconsistencies (e.g.
dangling pointers) to persistent data in NVRAM. Hence, some
set of critical updates to persistent data must be applied on
all-or-nothing basis, and in the correct order with respect to
other updates, to guarantee the consistency of in-memory
persistent data. Prior work [14, 15, 39] in this area has
focused on developing non-volatile memory programming
libraries (NVMPLs) which enable programmers to specify a
failure-atomic section (FASE) [14] of updates to persistent
data using familiar programming languages such as C/C++.

This paper focuses on efficient memory management of
persistent memory, an issue that was largely sidestepped by
previous work. In addition to ensuring that online allocations



and deallocations are efficient, two primary challenges are
addressed here:

1. Allocator metadata consistency: The internal invariants
have to be maintained in NVRAM in a fail-safe manner
across restarts and tolerated failures to continue to allo-
cate memory correctly.

2. Failure-induced persistent memory leaks: If persistent
memory is allocated but a failure occurs before an appli-
cation handle can be assigned to that memory, that mem-
ory location is essentially leaked since it is unreachable
on program restart.

This paper describes Makalu1, a persistent memory al-
locator that uses offline garbage collection (GC) to provide
leak-freedom. Persistent data has two distinct phases with re-
spect to a mutator application: (1) online, when the mutator
is active and (2) offline, when the mutator is absent, but the
heap is still accessible. After a failure, once the NVMPL re-
stores persistent data to a consistent state, Makalu performs
the parallel mark phase of mark-and-sweep GC offline fol-
lowed by incremental sweeps online to avoid both failure-
induced and programmer-induced leaks. This approach en-
ables us to interoperate with other NVMPLs, while support-
ing unrestricted online usage of standard de-/allocation in-
terfaces within a C/C++ program.

Makalu has built-in failure-resilience and recovery mech-
anisms to guarantee consistency of its metadata without de-
pending on any NVMPL. Note that Makalu does not determine
what data needs to be persisted or the structure of the per-
sistent data. It only determines the structure of the heap in
NVRAM.

Our approach achieves interoperability with existing code
while providing a safety-net against all sources of memory
leaks. By having the offline GC restore certain metadata,
we avoid the need to ensure full consistency of metadata
at every allocation, normally an expensive online operation.
Makalu’s raw online allocation speed and multi-threaded
scalability are comparable to well known transient alloca-
tors, a tremendous improvement compared to state-of-the-
art persistent allocators. We integrated it with two NVMPLs,
Atlas and Mnemosyne, and saw up to 2x speed improve-
ment in some scientific applications compared to NVMPLs’
default allocators. This observation leads us to believe that
offline garbage collection may become an integral part of
future NVRAM memory management schemes. Our contribu-
tions include:

• A careful analysis of the requirements and opportunities
for NVRAM memory allocation.
• A set of techniques that result in an NVRAM memory

allocator that is often competitive with widely used DRAM

1 Makalu is the fifth highest mountain in the world. Its four-sided pyra-
mid shape represents the challenges we simultaneously address: memory
management, garbage collection, persistent vs transient data, and failure-
resilience.

allocators, and provides failure consistency at orders of
magnitude lower cost than prior approaches.
• A demonstration that recovery time garbage collection

not only simplifies the programming model, but also,
by allowing reconstruction of metadata at recovery time,
greatly speeds up NVRAM memory allocation. The offline
GC is performed at a small fraction of the cost of general
GC.

2. Background
2.1 Architectural Assumptions
We make similar assumptions about the underlying archi-
tecture as found in prior NVMPL work [14, 15, 39]. NVRAM
is assumed to retain data through tolerated failures, such
as power failures. For convenience, NVRAM latency is as-
sumed to be comparable to DRAM, which may or may not be
present. At the lowest level, initial NVRAM devices may make
trade-offs resulting in write latencies appreciably longer than
DRAM. But this increased latency may not be user-visible.
It appears likely that memory controllers will have enough
capacitive power backup such that write requests, once ac-
cepted by the memory controller, can be viewed as persis-
tent. Even if the power and the CPU die, the controller will
ensure that accepted requests are written. Hence, the actual
write latency to the NVRAM device may not matter for our
purposes.

NVRAM endurance is expected to be orders of magnitude
better than that of SSDs [4, 33] but solutions have been
proposed [19] if wear-out is a concern. We do not address
NVRAM endurance in this paper.

Several levels of volatile caches and potentially other
volatile buffers exist between the CPU and NVRAM. We as-
sume a tolerated failure (such as a process crash, an OS ker-
nel panic, and a power failure) to be fail-stop. In such an
event, the data that are already in NVRAM survive, but other
data in volatile hardware structures do not.

Instructions are available to selectively evict or flush a
cache line from the volatile caches into NVRAM (such as Intel
x86 CLFLUSH [26] and CLWB [25]). Once evicted, these cache
lines will eventually reach memory. These instructions are
expensive [14, 39] and should be sparingly used2.

2.2 Programming Assumptions
NVRAM is mapped directly into the process address space
without any buffering and is accessible using CPU loads
and stores. Persistent data is stored in named containers (a
concept similar to mmapped files) called NVRAM regions. A
persistent heap exists within the realm of an NVRAM region.
When a heap is in a consistent state offline, all useful data
that should be accessed upon restart must be reachable from
a set of known persistent roots, otherwise, data can be con-
sidered garbage and reclaimed. In Makalu, there are 512

2 A CLFLUSH instruction [26] in Intel x86-64 takes ≈ 200ns [14].
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Figure 1: A snapshot of persistent heap with heap objects
reachable from top level region roots within a NVRAM region.

top-level region roots stored in known locations within the
NVRAM region. These assumptions are similar to ones made
by most current NVMPLs [2, 14, 15, 39]. Figure 1 shows a
sample persistent heap along with top level roots. We as-
sume that an NVRAM region is always mapped at the same
base address so that existing persistent-to-persistent point-
ers embedded in it remain valid, while persistent-to-transient
pointers are ignored by the offline GC. With more precise
pointer identification in the future, the offline GC phase can
automatically clear such pointers for the programmer.

We assume that Makalu will be used in conjunction with
other NVMPLs. The usage model requires the programmer to
identify persistent data and manage them within an NVRAM

region using malloc/free-like calls. Like much recent re-
search in this area [14, 39], we assume an explicit persis-
tence model where persistent data are directly identified by
the programmer at allocation time. In our framework, this
is done by using our APIs to allocate such data. This is in
contrast to reachability-based persistent schemes [7, 16, 23]
where programmers are not required to indicate persistence
at object allocation time; instead, all data reachable from a
persistent root must be made persistent. Failure-resilience of
persistent data has a cost and the programmer may not want
arbitrary data, such as passwords, to be transparently per-
sisted. Thus we choose to favor explicit programmer control,
also avoiding implicit reachability scans during execution.

Note that Makalu only guarantees the consistency of per-
sistent heap structure, and not of the data stored within. The
latter is expected to be provided by the NVMPL in use.

2.3 Terminology
Some commonly used memory allocation terms have the
following meaning in this paper:
Memory object: A contiguous sequence of bytes in a per-
sistent heap. The starting address is returned by the allocator
while fulfilling a memory allocation request and the size cor-
responds to the number of bytes actually allocated.
Granule: The unit of actual memory allocated. In Makalu,
all memory requests are rounded up to some multiple of the
granule size, which is 16-bytes.

Block: A larger fixed-size contiguous sequence of bytes
of virtual address space that can be divided into smaller
memory objects to fulfill memory requests. In Makalu, the
default size of a block is 4096 bytes (same as the page size in
common operating systems). The starting address of a block
is always page-aligned in Makalu.
Chunk: A contiguous sequence of one or more block(s).

3. NVRAM Allocator Challenges
Traditional factors, such as memory consumption and allo-
cation speed, have historically influenced the design of tran-
sient memory allocators. Designing a persistent memory al-
locator for NVRAM offers the following additional challenges.

3.1 Failure-induced Inconsistencies
A failure in the middle of updating the allocator’s metadata
can lead to metadata inconsistencies. We categorize such
inconsistencies as internal w.r.t the allocator. Such internal
inconsistencies often have disastrous consequences such as a
failure to restart properly, erroneous re-allocation of memory
objects currently in use, or the leakage of large chunks of
memory.

A failure may also cause discrepancies at the muta-
tor/allocator interface. We classify such inconsistencies as
external w.r.t the allocator. For example, consider a scenario
where a failure occurs after a call to malloc has returned
(i.e. after an allocator has updated the internal metadata in
a fail-safe manner) but before the returned address is stored
in a persistent location by the mutator. This is essentially a
failure-induced memory leak since upon restart, the alloca-
tor deems the returned memory object “allocated” though it
is not reachable from any persistent root.

3.2 Transient vs Persistent Metadata
We classify NVRAM allocators’ metadata into two categories:
core and auxiliary. Core metadata is irrecoverable once
corrupted. Auxiliary metadata on the other hand can be
re-created using consistent core metadata. Although aux-
iliary metadata can be re-created at the beginning of each
restart, and maintained in transient memory to avoid the
cost of failure consistency, doing so may cause a long restart
time, especially if recreating such auxiliary metadata is time-
consuming. On the other hand, maintaining it in NVRAM may
make restart instantaneous but at the expense of online over-
head to maintain its failure consistency.

3.3 Online Failure Consistency Overhead vs. Recovery
Core persistent metadata often need to be updated in a way
that always ensures their consistency. Such a mechanism
frequently uses expensive instructions to flush cache lines
after each update, and can adversely affect the allocation
speed.

The consistency of auxiliary metadata stored in NVRAM

need not be guaranteed as aggressively as the core metadata



because it can be recreated from core metadata. For instance,
an allocator may choose to only periodically flush cache
lines containing updates to auxiliary metadata rather than
after every update, so long as any resulting inconsistency
is detectable. This approach reduces the online consistency
overhead but increases the recovery time. If a failure occurs
when the metadata is momentarily inconsistent, it has to be
re-computed in the recovery phase. Hence, tradeoffs exist
between recovery time vs. the online consistency overhead.

3.4 Safe Deallocation
Many of the existing NVMPLs such as Mnemosyne[39] and
Atlas[14] use transactional logging mechanism to guaran-
tee failure-atomic updates within a FASE. When a persis-
tent allocator is used in conjunction with such an NVMPL in a
multi-threaded application, it has to handle deallocation re-
quests from within a FASE in the following special manner:
the deallocation of the object itself and its reuse to fulfill fu-
ture memory requests have to be delayed until the allocator
can confirm that the deleted memory object will never be-
come live in the future. Logs belonging to partially executed
FASEs could potentially hold the memory object’s address.
When the log is replayed during recovery to restore the con-
sistency of user data, the memory object may be accessed
via the reference in the log despite the program’s request to
deallocate it earlier during the online execution phase. Mem-
ory allocators for programs written using software transac-
tional memory have to tackle a similar problem (see [24]).
A persistent allocator needs to offer a mechanism to delay
deallocation requests until the NVMPL in use can confirm that
the deallocations can be done safely.

4. Overview of our Approach
4.1 Integrated De-/allocation and Garbage Collection
Makalu is built upon the Boehm-Demers-Weiser garbage
collector (bdwgc) [12]. We chose to build our work upon
the bdwgc framework instead of other transient allocators,
such as Hoard [9] or jemalloc [18], because our approach
relies heavily on garbage collection, and bdwgc provides
inherent support for it. Grafting a garbage collector onto a
separately designed allocator is nontrivial, and in fact, quite
complex [35]. Having to deal with the persistence of both
sets of data structures in Makalu’s case makes such grafting
even more complicated.

However, Makalu and bdwgc differ in several key as-
pects. In addition to the transformation needed for the alloca-
tor to become failure-resilient and function correctly across
restarts, Makalu and bdwgc have some major differences
in allocation and deallocation strategies. As bdwgc was de-
signed for automatic memory management online, it has
poor support for explicit deallocations. Explicit online deal-
location is important in Makalu as we only support GC of-
fline. While bdwgc supports thread-local allocations, it does
not support thread local deallocation. Each deallocated ob-

ject is returned to the global freelist which requires hold-
ing a global lock. This approach lacks multi-threaded scal-
ability and prevents immediate memory reuse. Makalu, on
the other hand, supports thread-local deallocations, and also
uses a simple strategy to tackle the issue of memory blowup
in multi-threaded applications, when some threads favor al-
location while others favor deallocation (see § 7). This was
not a concern in bdwgc in the absence of thread-local deallo-
cations. We compare Makalu with the intermediate modified
version of bdwgc in our evaluation (see § 13). Our results
show that Makalu has the ability (rare among allocators) to
support both explicit deallocation and garbage collection ef-
ficiently.

Similar to bdwgc, Makalu’s heap is structured as a Big-
Bag-of-Pages, maintaining persistent metadata only at the
block level and in separate headers (see § 5.1). This approach
helps minimize the amount of persistent metadata. Core in-
formation stored in the header about the layout of the heap
(e.g. object size associated with a block) is considered to
be irrecoverable once lost, and hence is only updated with
ACID guarantees. We rely on locks for isolation and a built-
in log-based approach for ensuring all-or-nothing visibility
for a set of updates to NVRAM (§ 8).

In our setting, we currently run the garbage collector in
a fully conservative mode, with no pointer location or type
information communicated to the collector. This suffices
to ensure metadata consistency. As discussed in section 9,
other choices are also possible. The notion of offline garbage
collection to mitigate failure-induced leaks, improve inter-
operability, programmability and online allocation perfor-
mance explored in this paper can be applied in the context
of strongly-typed languages such as Java and in the presence
of precise garbage collection as well.

4.2 Choosing Persistent Metadata
To reduce the cost of persistent metadata updates, Makalu
maintains a list of free objects in transient memory (see § 6)
during the online phase. An allocation and a deallocation
only require the corresponding memory object to be respec-
tively removed from and added to the transient freelist. A
failure may cause outstanding memory objects in Makalu’s
transient freelist to be lost momentarily. Makalu uses offline
garbage collection to reclaim such objects and fix all other
failure induced external inconsistencies based on the reacha-
bility of memory objects in the persistent heap. As a positive
side effect, it also reclaims persistent memory leaked due to
programming errors.

To avoid expensive computation at clean non-failure
restarts, Makalu stores some selected auxiliary information,
such as the header look-up table (see § 5.2), in persistent
memory. We minimize the expense of persistent updates to
these structures during the online phase, by assuming them
to be inconsistent after a failure, and rebuilding them of-
fline from core persistent metadata. Thus, online updates to
these structures only need to be visible in NVRAM by the time



Interface User Description

MAK start N One time call to set up and start
Makalu in a new NVRAM region

MAK restart N Restart Makalu from existing
metadata

MAK start off N Restart Makalu offline
MAK collect N Request GC offline
MAK close N Signal Makalu to stop gracefully
MAK set free cb N Set callback function for free (see

§ 10)
MAK safe free N Execute deferred free(s) (see

§ 10)
MAK malloc

P
Drop-in replacement for standard
C/C++ de-/allocation methods

MAK calloc
MAK realloc
MAK free
MAK set root

P
Sets/gets top level NVRAM region
rootsMAK get root

Table 1: List of Makalu’s public interfaces.
User: N = NVMPL, P = Programmer

Makalu stops gracefully. This assumption enables us to po-
tentially accumulate some number of updates to persistent
structures before having to guarantee visibility. (see § 8.1).

4.3 APIs provided by Makalu
Table 1 presents a list of Makalu’s major functions in its
public interface. Programmers are only responsible for in-
voking a handful of these functions. For integration with a
transaction-based NVMPL, Makalu provides interface to defer
deallocation requests until the NVMPL in use can confirm that
the deallocated object is truly unreachable (see § 3.4). While
the programmer-facing interface is largely self-explanatory,
we defer the discussion of deferred deallocation and NVMPL-
facing interface until § 10.

4.4 Comparison with Existing NVRAM Allocators
In both Mnemosyne [39] and Atlas [14], persistent memory
allocations must be done within FASEs in order to guaran-
tee the absence of failure-induced memory leaks. In addi-
tion to overheads incurred by failure-atomicity requirements
of a FASE for every allocation, this clearly is a program-
ming constraint. NV-Heaps [15] provides automatic garbage
collection using reference counting but requires weak point-
ers to correctly deal with cyclic data structures. Some ex-
isting NVRAM allocators, such as nvm malloc [36], require
two method calls just to allocate a persistent object. Other
NVMPLs, such as pmem.io [2], combine allocation, initial-
ization and publication steps into a single allocation method
call. These interfaces are far removed from traditional allo-
cation interfaces.

Avoiding failure-induced memory leaks requires building
a consensus between the allocator and the NVMPL after fail-
ure regarding what allocated memory objects are in use vs.

free. There are several ways to obtain this consensus. One
simple approach, but a burdensome one for programmers, is
to require explicit code that traverses persistent data struc-
tures and reports them to the allocator after a failure, so that
others can be deallocated. Another approach, one that seems
to be taken by existing NVMPLs, is to tightly coordinate de-
/allocation actions with the failure consistency semantics as
described earlier. We present a superior approach that relies
on offline garbage collection by tracing through application
data structures to identify reachable NVRAM locations, essen-
tially reaching consensus with the NVMPL in use. This way,
familiar de-/allocation interfaces remain unchanged and can
be called anywhere in the program, both within and outside
FASEs.

Figure 2 compares three versions of the same code snip-
pet written using a generic abstraction of a FASE [14] to add
a node to the persistent queue in a fail-safe and thread-safe
manner, while using a different flavor of a persistent allo-
cator for each version. With the NVMPL’s default allocator
as shown in figure 2a, allocation and publication must hap-
pen within the same FASE to avoid failure-induced mem-
ory leaks, resulting in a large FASE. Another stand-alone
persistent allocator, nvm malloc [36] as shown in figure 2b
supports reserving and initializing a persistent memory ob-
ject before entering the FASE. However, the actual alloca-
tion and publication steps must still occur within the FASE
as shown in figure 2b because nvm malloc combines allo-
cation and publication steps into a single allocation method.
The primary inconvenience of this approach is the non-
traditional interface. The use of Makalu, as shown in fig-
ure 2c, results in the smallest FASE, and a more familiar
programming paradigm. In fact, while going from a transient
to a persistent version of this code, the only change neces-
sary in the Makalu-enabled version is the replacement of the
allocation call with Makalu’s corresponding one.

Note that the primary goal of our work is to understand
the challenges of developing an interoperable and leak-free
allocator, and investigate design decisions that can mini-
mize failure consistency overhead. Improving the raw per-
formance of an allocator is only a secondary goal.

5. Internal Structures and Layouts
In this section, we describe the internal structures of Makalu
and how they are laid out in persistent memory within the
NVRAM region. We classify each structure as either core or
auxiliary metadata as described in § 3.2.

5.1 Persistent Block Header
Both an individual block as a well as a contiguous set of
blocks (a chunk) in Makalu have a persistent header associ-
ated with them. Figure 3 shows the important header fields.
The fields hb block, and hb sz store the starting address of
a block or a chunk and its total size respectively. The field
hb flag indicates whether a block or a chunk is currently



BEGIN_FASE();

/* allocate */

Node* t_tmp =

nvm_alloc(sizeof(Node));

/* initialize */

t_tmp->val = 10;

t_tmp->next = NULL;

/* publish */

p_queue->tail->next = t_tmp;

p_queue->tail = t_tmp;

END_FASE();

(a) An NVMPL’s default allocator [14, 39]

/* reserve */

Node* t_tmp =

nvm_reserve(sizeof(Node));

/* initialize */

t_tmp->val = 10;

t_tmp->next = NULL;

/* allocate + publish */

BEGIN_FASE();

p_queue->tail->next = t_tmp;

nvm_activate(t_tmp,

&(p_queue->tail), t_tmp,

NULL, NULL);

END_FASE();

(b) nvm malloc [36]

/* allocate */

Node* t_tmp =

MAK_alloc(sizeof(Node));

/* initialize */

t_tmp->val = 10;

t_tmp->next = NULL;

/* publish */

BEGIN_FASE()

p_queue->tail->next = t_tmp;

p_queue->tail = t_tmp;

END_FASE()

(c) Makalu

Figure 2: Code snippets using different flavors of persistent allocators and a generic NVMPL abstraction of a FASE. Prefixes ‘t ’,
and ‘p ’ denote transient and persistent program variables respectively. Each code snippet shows the common programming
idiom of allocation, initialization, and publication of a persistent node of a queue.

header {

void* hb_block;

long hb_sz;

int hb_flag;

long hb_mark_bits[BITS_SZ];

long hb_n_mark_bits;

...

}

Figure 3: Structure of the block header

in use or free. If a block is currently used to fulfill memory
requests, hb sz stores the size of memory objects allocated
from that block. Note that all objects allocated from a single
block are of the same size in Makalu. We regard the above
three fields in each header as part of the core metadata and
the rest are auxiliary. Makalu updates these fields using built-
in support for ACID guarantees described in § 8.

Each object in a block has a corresponding bit in
hb mark bits. If the bit is set, the object is either already
allocated or some thread has already added to its freelist in-
tending to allocate it. Alternatively, a thread cannot add to
its freelist an object within a block whose mark bit is already
set.

Field hb n mark bits stores the count of mark bits cur-
rently set for convenience purpose. Although mark bits are
stored in persistent memory, we regard them as auxiliary
metadata because Makalu has the ability to recreate them
offline based on the reachability of objects using GC.

A block header is allocated within header spaces, which
are one or more fixed-length sections of memory within an
NVRAM region (and outside the heap) specifically designated
for this purpose and shown in figure 4. Allocating headers
only in header spaces enables Makalu to precisely know
where all the core information is located so that it can be
found during recovery to recreate auxiliary metadata.
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Figure 4: Layout of Makalu in an NVRAM region

Occasionally, one or more free adjacent blocks having
their own headers coalesce to form a chunk requiring only
a single header for the chunk beyond that point (see § 7.2).
This block coalescing action frees up one or more headers
which are added to the header freelist (HFL) for future
reuse. HFL is auxiliary metadata as it can be recreated by
scanning header spaces for all free headers.

5.2 Persistent Header Map
The header map in Makalu provides a method to conve-
niently look up corresponding header information for a given
memory object, a block or a chunk. Additionally, it provides
iterators to selectively iterate over blocks (free vs. allocated)
via headers and without touching the actual blocks. This map



is adopted from bdwgc[11]. It is stored in header map space,
another specially designated section of memory within an
NVRAM region for this purpose and shown in figure 4.

This map is auxiliary metadata that can be re-created in
the header map space from scratch by adding each header
from one or more header space(s). It is nonetheless stored in
NVRAM to avoid the expense of rebuilding it at each normal
re-start. A single scan through a header space during offline
recovery is enough to create both the header map and the
HFL. Therefore, we maintain their failure consistency less
aggressively (see § 8.1) and rebuild them from scratch after
each failure, which presumably should be rare.

5.3 Persistent Log Space
Makalu uses a log-based approach to update the core meta-
data in a fail-safe manner (see § 8). Since the persistent logs
must be consistent at all times, the log space is a core data
structure. As part of setting up a new region, it designates
a fixed amount of space, as shown in figure 4, within the
NVRAM region for persistent logs to be written. This space is
reused repeatedly across execution cycles.

5.4 Persistent Roots
Makalu designates a persistent root space (separate from
the heap space) within each NVRAM region for storing top-
level NVRAM region roots. Makalu supports up to 512 top-
level NVRAM region roots so that useful data within the NVRAM
region’s heap space can be conveniently accessed. Any ith

region root can be accessed using setter and getter methods
listed in table 1.

5.5 Persistent Base Metadata
Apart from the information in the block header, Makalu
also maintains the following information as part of the core
metadata.

• NVRAM region base (rgn base) and max heap
(rgn curr) address
• Log space starting address (md log space start)
• Current log version (md log version) (see § 8)
• List of header spaces
• Address of the header map space
• Persistent root space start address

All of the above information is stored in base metadata space
shown in figure 4. Most fields in base metadata, such as log
space starting address, do not change once set. Other meta-
data fields, such as the current log version, are updated with
ACID guarantees when necessary. Recovery is not possible
without the consistent information provided by each field in
the base metadata.

5.6 Transient Chunk Freelists
During the online phase, Makalu maintains a global transient
list of free chunks segregated by the number of free blocks
in them. When Makalu restarts, it recreates the list by adding
all free chunks to it using the iterator provided by the header
map.

5.7 Transient Object Freelists
Makalu classifies memory objects as small (≤ 400 bytes),
medium (> 400 bytes, ≤ half a block), and large objects
(> half a block). During the online phase, Makalu main-
tains small object freelists on a per thread basis and global
freelists for medium objects. Both small and medium object
freelists are segregated by object size and each freelist is a
transient LIFO list. Large object de-/allocations are handled
directly by the chunk freelist (see § 6).

5.8 Transient Reclaim Lists
Makalu creates a list of partially allocated blocks (containing
some free objects) at the beginning of each online phase by
iterating over allocated blocks using the iterator provided
by the header map. The reclaim list is a global transient
structure organized as a set of object-size-segregated lists.
Such a list enables us to sweep one block at a time looking
for free objects of a particular size to refill a freelist.

6. Allocation
Allocation requests for small and medium objects are rounded
up to the nearest granule multiple. For small objects, the allo-
cating thread simply removes and returns the first item in the
thread local freelist for that size. For medium sized objects,
it removes and returns the first item from the appropriate
global freelist after acquiring a lock for that size. Allocating
objects from a transient freelist requires no persistent up-
dates – note that the mark bit for the object is already set by
this time (see below).

6.1 Refilling an Empty Freelist
If a freelist for a particular size is empty, the allocating
thread performs an incremental sweep, i.e. it scans a partially
allocated block to refill the freelist. It acquires a lock for
a reclaim list corresponding to that size, removes the first
block in the list and looks up the header for the block using
the header map. Each free object, as indicated by its mark
bit in the header, is added to the transient freelist while
simultaneously setting the mark bit. A set mark bit indicates
to another thread (going through the block for free objects at
later times) that the object is either already in someone else’s
freelist or allocated.

A gracefully terminating thread gives each remaining ob-
ject in its transient freelists back to the block by clearing the
corresponding mark bit in the header for that object (so that
other threads can use it to refill their freelist). During this
process, if Makalu notices that a handful of objects have be-



come available in a specific block, it adds that block back
to the reclaim list making it available to other threads for
sweeping. Before a graceful shutdown, Makalu also rein-
states all objects in medium object freelists to the corre-
sponding block in a similar manner.

All persistent updates to mark bits are guaranteed to be
visible in NVRAM by the time Makalu gracefully stops, using
techniques described in § 8.1. This guarantee is sufficient for
mark bits to be reliably used in the next online execution cy-
cle (to create the reclaim list) following a graceful shutdown.

A failure will momentarily leave objects in transient
freelists unaccounted for. Therefore, Makalu starts with a
clean slate in recovery mode and reconstruct a set of mark
bits for each block, purely based on object reachability, by
using GC. The objects residing in freelist prior to a fail-
ure would appear allocated but unreachable in the heap, and
are guaranteed (modulo GC conservatism) to be discovered
by the offline GC. Hence, the GC’s presence enables us to
cheaply maintain frequently updated freelists in transient
memory.

If the reclaim list for a particular size is empty, the allocat-
ing thread allocates a new block (see below) from the chunk
freelist. All objects from the newly allocated block are then
added to the empty freelist after setting the corresponding
mark bits in the header.

6.2 New Block Allocation
To allocate a new block, Makalu searches for the smallest
chunk (cs) (ideally a chunk with a single block) available
among the transient chunk freelists. Recall that the chunk
freelist is segregated by the chunk size (number of blocks
in them). It removes cs while holding a lock for the specific
freelist where it finds cs. Next, Makalu obtains the header for
cs. A block is allocated from cs using the following steps:

1. Remove the first block (b1) from cs by adjusting
the chunk’s size (hb sz) and the beginning address
(hb block) in its header.

2. Allocate a header for b1 and add it to the header map.

3. Set b1 header fields hb block, hb sz with the starting
address, and the size of the object to be allocated from b1
respectively. Set the hb flag indicating currently in use.

Once the block is allocated, the remaining portion of cs is
returned to the chunk freelist appropriate for its new size.

Failure-induced partial NVRAM updates from steps 1-3
above can cause inconsistencies in the core persistent meta-
data, leading to undesirable effects, such as a permanently
leaked block. Therefore, the allocating thread performs all
persistent updates to core metadata in steps 1-3 with ACID
guarantees (see § 8 for failure atomicity).

6.3 Large Object Allocation
Allocation requests for large objects are rounded up to the
nearest multiple of a block and serviced directly from the

chunk freelist. The process is similar to allocating a new
block described in § 6.2.

6.4 Expansion of Heap Space
The allocating thread expands the heap when the chunks
are insufficient to fulfill an outstanding memory request.
Heap expansion requires performing the following steps
with ACID guarantees because updates to core metadata
are involved.

1. Increment the NVRAM region bump pointer, rgn curr
(stored as base metadata, see § 5.5)

2. Allocate a header for the acquired chunk and add it to the
header map

3. Store chunk’s size, and the starting address in the header,
and set the flag in the header

Once the heap is expanded, allocations can occur as de-
scribed earlier.

7. Deallocation
Using the header map (§ 5.2), the deallocating thread com-
putes the block and the size of the object from the address
being deallocated. If it’s a small object, it’s added to the start
of the deallocating thread’s local freelist corresponding to
its size. It does not require any update to persistent meta-
data. We do not attempt to return the object to the allocating
thread. This is in contrast with the approach taken by some
transient allocators such as Hoard [9] to prevent an allocator
from inducing false cache line sharing in multi-threaded ap-
plications. Similar to [27], we expect a programmer to allo-
cate cache-aligned objects where false sharing is a concern.
Medium-sized objects are added to the corresponding global
freelist after acquiring the per size lock (see § 6).

7.1 Object Freelists Truncation
The total bytes of memory held in each medium and small
object freelist is capped at twice the size of the block. If a
transient freelist (for small and medium objects) grows to its
maximum capacity when a thread deallocates an object, the
thread is responsible for truncating the freelist by half, leav-
ing the top half of the objects for future allocation requests.
This design has the following advantages:

• It prevents unbounded memory blowup in applications
with producer-consumer de-/allocation patterns among
threads [9].
• It bounds the amount of work that a gracefully terminat-

ing thread has to perform to purge its small object freel-
ist. It also bounds the number of medium objects in the
global freelist that Makalu has to process before a grace-
ful shutdown.

To truncate a free list, a thread removes one object at a
time from the freelist, looks up the block header for the ob-



ject removed from the freelist, and marks the object as avail-
able in the future for other threads (to add to their freelist)
by clearing the corresponding mark bit in the block header.
Moreover, if a thread notices that a sufficient number of ob-
jects have become free in a block when clearing the mark bit,
it adds the block back to the reclaim list. It acquires a lock
for the appropriate reclaim list to do so. Note that objects in
a single freelist may come from more than one block due to
a number of factors such as objects being deallocated from
a previous execution cycle, remotely allocated object being
added to the local freelist following a deallocation and so on.
Consequently, one or more blocks may be put back into the
reclaim list.

Other threads can re-use the block returned to the reclaim
list to refill their freelists at later times (§ 6). All updates
to mark bits are guaranteed to be eventually visible by the
time Makalu shuts down gracefully see (§ 8.1). If a failure
occurs before all mark bits become visible, GC will start
with a clean slate and create a consistent set of mark bits
in recovery mode as described in § 6.1.

7.2 Empty Block Deallocation
It is quite possible for the entire set of mark bits to be cleared
for some block during the freelist truncation. A set of all
clear mark bits indicates that objects belonging to the block
are neither allocated nor do they reside in any of the transient
freelists. At this point, it is safe for Makalu to deallocate
the entire block and add it back to the chunk freelist. This
enables the block to be re-used to fulfill memory requests for
another size class. Figure 5 shows the pseudocode for block
deallocation. The deallocating thread attempts to coalesce
with the immediately preceding (lines 9–20) or the following
block/chunk (lines 21–30) (if they exist and are free) to
create a larger chunk of memory in the heap. All updates
to the core metadata in header fields are performed using
an internal interface (store nvm *) within an all-or-nothing
code section demarcated by start nvm atomic (line 8) and
end nvm atomic ( § 8) (line 36). If a failure occurs before
the complete set of updates to the header metadata in method
deallocate becomes visible in NVRAM, partial updates are
guaranteed to be undone restoring the consistency of all
headers involved. The GC will subsequently rediscover the
completely empty block offline and will deallocate it using
the same fail-safe approach.

7.3 Large Object Deallocation
Large object deallocation returns such objects directly to
the appropriate chunk freelist using steps similar to those
described above for empty allocated blocks.

8. ACID Guarantees for Metadata
Makalu uses internal interfaces presented in figure 6 to spec-
ify a set of persistent stores (to core metadata) that must
be atomic w.r.t failure, i.e. which need to be visible in

1: deallocate(Block* b)

2: {

3: lock(gml);

4: hdr* cHdr = map.find(b);

5: hdr* pHdr = map.find(b-1);

6: hdr* nHdr = map.find(b+1);

7: /* ACID section */

8: start_nvm_atomic();

9: /* coalesce with previous block */

10: if (pHdr && isFree(pHdr)) {

11: removeFromChunkFL(pHdr -> hb_block);

12: /* ACID update, core metadata */

13: store_nvm_word(&pHdr -> hb_sz,

14: pHdr -> hb_sz + BLOCK_SZ);

15: store_nvm_word(&cHdr -> hb_sz, 0);

16: store_nvm_addr(&cHdr -> hb_block,NULL);

17: uninstall(cHdr);

18: cHdr = pHdr;

19: coalesced = 1;

20: }

21: /* coalesce with next block */

22: if (nHdr && isFree(nHdr)){

23: removeFromChunkFL(nHdr->hb_block);

24: store_nvm_word(&cHdr->hb_sz,

25: cHdr->hb_sz + nHdr->hb_sz);

26: store_nvm_word(&nHdr->hb_sz, 0);

27: store_nvm_addr(&nHdr->hb_block, NULL)

28: uninstall(nHdr);

29: coalesced = 1;

30: }

31: /* update the current hdr */

32: if (!coalesced){

33: store_nvm_word(&cHdr->hb_sz, BLOCK_SZ);

34: store_nvm_int(&cHdr->hb_flag, FREE);

35: }

36: end_nvm_atomic();

37: addToChunkFL(cHdr);

38: unlock(gml);

39:}

Figure 5: Pseudocode for empty block deallocation

NVRAM on an all-or-nothing basis. Makalu uses undo-logs
to enforce failure atomicity guarantees. start nvm atomic

(lines 1–3) marks the beginning of the set of failure-atomic
writes. A call to this method is always preceded by an ac-
quisition of the global mutex lock which provides the iso-
lation guarantees amidst multiple mutator threads. Within
the atomic section, core metadata is modified using one
of the store nvm * methods (lines 8–26) based on the
metadata type. Details for the integer method are shown
in the figure (lines 8–23). Each of these methods creates
a log entry containing the memory address, the current
value of the metadata , and its data type (lines 9–12) be-
fore storing the new value. The new log entry is pub-
lished (lines 14–16) by stamping the entry with the current
value of md log version. Recall that the current value of



1: start_nvm_atomic(){

2: next = md_log_space_start;

3: }

4: end_nvm_atomic(){

5: md_log_version++;

6: FLUSH(md_log_version);

7: }

8: store_nvm_int(int* addr, int val){

9: /* create a log entry */

10: next->addr = addr;

11: next->val.int_val = *addr;

12: next->type = INT;

13: MEMORY_FENCE();

14: /* publish */

15: next->version = md_log_version;

16: FLUSH(next);

17: /* next log entry pos. */

18: next++;

19: /* store the value */

20: *(addr) = val;

21: /* make the update visible */

22: FLUSH(addr);

23: }

24: store_nvm_word(int* addr,int val);

25: store_nvm_char(int* addr,char val);

26: store_nvm_addr(void** addr,void* val);

Figure 6: Internal facility for failure-atomic updates

md log version is stored as Makalu’s core base metadata
(see § 5.5). Makalu ensures that the log entry is visible in
NVRAM using memory fences (line 13) and cache line flushes
(line 16) before storing the new value and making the value
visible in NVRAM (lines 19–22). A call to end nvm atomic

marks the end of the failure-atomic updates by incrementing
the md log version and flushing it to NVRAM (lines 4–7).

If a failure occurs before the incremented value of
md log version becomes visible in NVRAM, Makalu
starts in an offline phase. It then infers that there are par-
tial updates from the previous run if there is a log en-
try in the designated log space with the same version as
md log version (the current log version visible in NVRAM).
The last log entry with that version is obtained and the undo
entries are applied in reverse order of their creation, thus nul-
lifying the effects of original updates. Once it has fully re-
played the relevant log entries and flushed all the effects of
replay to NVRAM, it increments the log version (while still
offline) and makes it visible in NVRAM. The number of log
entries never grows beyond a certain number ( 20 entries)
because the provided interface is only used internally in spe-
cific scenarios. Each scenario has a statically known number
of related updates.

8.1 Eventual Visibility for Metadata
The consistency of auxiliary metadata such as header map
and mark bits is guaranteed using a technique less aggres-

sive than one described above. Multiple updates to these
metadata can be allowed over the course of online execu-
tion before issuing a cache line flush to ensure their visibil-
ity. All updates only need to be visible by the time of the
graceful shutdown to avoid expensive recovery and restart.
We explicitly guarantee their visibility before the graceful
shutdown to avoid the chance of dirty cache lines getting
lost because of a hardware failure between graceful process
termination and next restart. We use a scheme, roughly anal-
ogous to one used in [14], that tracks multiple updates to
the same cache line using a fixed-size hash table. Modified
cache lines that have not yet been flushed appear in the ta-
ble. Hash table collisions are resolved by flushing the cache
line corresponding to the previous entry and removing it. Af-
ter the last update to auxiliary metadata before the graceful
shutdown, the hash table is emptied by flushing each dirty
cache line being tracked in the table.

9. Offline Recovery and GC
The offline phase has distinct steps that must be initiated in
the following sequence:

9.1 Recovery
Following a failure, Makalu starts in an offline mode. The
log replay ensures that the core metadata is restored to a
consistent state. Next, Makalu purges the existing header
map and builds a new one by scanning each header space
and adding headers currently in use to the header map. Mark
bits in the header are also cleared in the process. Free headers
found (not currently assigned to any block) are added to HFL
(§ 5.1).

9.2 Garbage Collection
The NVMPL with which the allocator has been integrated typ-
ically makes a request to collect garbage once it has re-
stored the user data in the heap to a harmonious state. Such
garbage collection is significantly simpler than a conven-
tional garbage collector since there is no mutator present,
and the set of garbage collection roots is limited to a small set
of explicitly specified region roots. The effort that garbage
collectors normally invest in, for example, stopping threads
and parsing thread stacks, is unnecessary. So are the usual
constraints on the compiler to avoid concealed pointers in
registers, etc.

It would be possible to restrict NVRAM data structures so
that pointer locations in NVRAM-allocated objects are appar-
ent. We could require that for NVRAM data structures, roots
and pointer fields be declared with their correct type (and
not, for example, as void * or intptr t), and that unions
be suitably restricted. We expect to adopt at least some such
restrictions or annotations in the future so that the garbage
collector can reliably clear persistent-to-transient pointers.
Such pointers are obviously invalid after a process restart.

For now, we instead adopt the parallel mark and sweep
algorithm from bdwgc as described in [12, 13] in a fully con-



servative mode for our C/C++ setting. It imposes the fewest
restrictions on reuse of existing code in an NVRAM setting. Al-
though this clearly affects the details we describe below, we
do not believe it affects the fundamental benefit of greatly
reducing the cost of metadata updates during allocation.3

The mark phase starts by analyzing persistent roots ex-
plicitly registered as part of the NVM region (see § 5.4).

The entirely empty blocks found at the end of the mark
phase are deallocated using the process described in § 7.2.
All mark bits for each partially allocated blocks are made
visible in NVRAM before the offline recovery completes.
This enables the reliable recreation of reclaim list at the
beginning of the online restart and threads to subsequently
refill object freelists using blocks in the reclaim list (i.e.
perform online incremental sweeping; see § 6.1).

10. Integration with NVMPL

10.1 NVMPL facing Interfaces
Makalu’s public interface (Table 1) provides an easy out-
of-the-box integration with NVMPLs. We expect an NVMPL to
enable Makalu to set itself up in a new NVRAM region using
the one-time call to MAK start. Each time an NVRAM region
is reused online, we expect an NVMPL to reinitialize Makalu
via MAK restart. Makalu restarts from the metadata stored
in NVRAM region and gets ready for de-/allocation requests by
rebuilding various transient internal lists such as reclaim lists
and chunk freelists from persistent metadata. As a part of
closing the region, we expect the NVMPL to call MAK close to
signal Makalu to shutdown gracefully. This involves taking
down transient freelists and guaranteeing visibility of all
persistent metadata updates.

For reasons discussed in § 3.4, Makalu may need to de-
fer deallocation requests made using MAK free. Makalu al-
lows the NVMPL to set up a deallocation callback method
(which is invoked by Makalu each time MAK free is called)
via MAK set free cb. For each object reported by Makalu
through the callback, the NVMPL can use a secondary
MAK safe free method to actually deallocate when it is
safe to do so. This approach neatly hides the complexity of
deferred deallocation from the programmer.

After a failure, the NVMPL is expected to start the recovery
phase by using MAK start off. At the end of this method
call, Makalu would have recovered its metadata to a consis-
tent state. Once the user data is in a harmonious state, the
NVMPL can invoke GC using MAK collect.

3 Note that the ”black-listing” mechanism in bdwgc is not currently func-
tional in this setting, since we have no data from prior GCs about misiden-
tified pointers to unallocated memory. We expect that, due to the small root
set size, it is also much less necessary than usual. It could be restored with
a fully concurrent, approximate, trace phase while the program is running.
Since this would not be used to reclaim memory, it could be allowed to err
in both directions. There should not be any need to synchronize with the
mutator. Or we could just broaden the scope of garbage collection.

10.2 Integration with Atlas and Mnemosyne
We substituted the default allocators found in two published
NVMPLs, Atlas [14] and Mnemosyne [39], with Makalu.
These two NVMPLs differ in their failure consistency seman-
tics. Atlas infers durable critical sections from lock-based
code, whereas Mnemosyne builds support for persistence
around software transactional memory for persistence.

The integration was straightforward for the most part.
Deferring deallocation was the most challenging aspect
of integration in both cases. Both set up a deferred call-
back method at the beginning of each execution cycle. In
Mnemosyne, deallocations within a transaction have to be
deferred. Mnemosyne creates a list of objects which are
deallocated within the transaction (as reported by Makalu
using callback) and deallocates them as a post-commit ac-
tion using MAK safe free method.

Similar to Mnemosyne, Atlas creates a list of objects
deallocated (reported by Makalu) within a failure-atomic
section (FASE) and associates the list with the current FASE.
The logs associated with a FASE are pruned by a distinct
helper thread in Atlas [14]. When the helper determines that
a certain FASE can be pruned, it deallocates all objects in the
list associated with the FASE using MAK safe freemethod.
In both Mnemosyne and Atlas, a programmer only interacts
with the standard malloc/free interface, while the complexity
of deferred deallocation is completely hidden from them.

Although we chose log-based NVMPLs to evaluate our ap-
proach, Makalu works with other forms of NVMPLs, say an
NVMPL based on a copy-on-write approach for failure con-
sistency. Note that Makalu’s internal metadata or its internal
log is never exposed to the programmer or NVMPL and has
absolutely no relation with the log generated by a log-based
NVMPL. Programmers and NVMPLs must concern themselves
with only Makalu’s API listed in table 1.

11. Execution Stages and Failure Mitigation
Makalu is designed to handle tolerated failures at all stages
of its execution, offline and online. In this section, we sum-
marize Makalu’s expected behavior in the case of a failure at
various stages of execution.

11.1 One-time Online Initialization
The initialization is considered complete once the call to the
method MAK start returns. At the end of the method call,
Makalu flushes all persistent metadata updates to NVRAM.
Next, it stamps the NVRAM region with a “magic number”
and flushes this update synchronously to NVRAM before the
method returns. Each time Makalu restarts, it checks for this
magic number to ensure that the given NVRAM region has
been initialized properly. If a failure occurs before this num-
ber is visible in NVRAM, Makalu requires the client NVMPL to
re-run the initialization routine. If a failure occurs after a suc-
cessful initialization and before the first call to de-/allocation
routines, Makalu’s persistent metadata remains unaffected



and hence, a client NVMPL may optionally skip Makalu’s of-
fline recovery routine altogether.

11.2 Online Re-initialization
Recall that a client NVMPL uses method call MAK restart to
re-initialize Makalu from its persistent metadata each time
NVRAM region is reopened for access. Makalu only reads the
persistent metadata to recreate transient structures during
this stage. Hence, a failure does not affect Makalu at all
at this stage. A client NVMPL can optionally skip Makalu’s
offline recovery routine in this case as well.

11.3 Online Execution
Any failure after the first call to de-/allocation routines and
before the call to MAK close can corrupt Makalu’s metadata
and lead to persistent memory leaks. In this case, a client
NVMPL is expected to restart Makalu offline and invoke re-
covery/GC routine.

11.4 Offline Recovery
Recall that Makalu’s offline recovery has the following three
distinct steps. A failure before the completion of all three
recovery steps requires Makalu to be restarted in offline
recovery mode.
Step 1: Persistent log replay. First, Makalu replays outstand-
ing persistent undo logs (if present) to restore the consis-
tency of core metadata (see § 8). After Makalu flushes all
the updates from log replay to NVRAM, it increments the
log version and flushes it synchronously. If a failure occurs
before the new incremented log version is visible in NVRAM,
it detects the same outstanding logs and replays them again.
Step 2: Reconstruction of auxiliary metadata. Recall that
Makalu recreates auxiliary persistent metadata from consis-
tent core metadata. If a failure occurs after the successful
completion of step 1 and before the completion of step 2,
the recovery resumes by discarding the partially constructed
auxiliary metadata, reclaiming the metadata space and re-
constructing the auxiliary metadata in that space.
Step 3: Garbage collection. If a failure occurs during a
GC or anywhere else after step 2 and before the call to
MAK close returns, Makalu discards partially constructed
mark bits and restarts the mark phase with a clean slate.
When the call to MAK close returns, a complete set of mark
bits are guaranteed to be visible in NVRAM and the recovery
is complete.

12. Related Work
Our work is most closely related to nvm malloc and pmem [2,
36]4. nvm malloc differs from our work in two distinct
ways. In nvm malloc, memory allocation requires two
method calls. The first only reserves persistent memory of
the requested size. The second method takes the returned

4 Both of these work essentially use a similar two-step allocation algorithm
that we henceforth refer to as nvm malloc.

persistent address, together with at least one persistent result
location, so that it can failure atomically perform the actual
allocation and store (publish) the allocated memory address
in the provided location. This is thus not a drop-in replace-
ment for conventional malloc and pays a higher cost than
Makalu for every allocation. Finally, nvm malloc does not
address interfacing with other NVMPLs. It does not provide a
mechanism to defer deallocations. Hence, it is not clear to
us how it operates correctly with NVMPLs such as Atlas [14]
and Mnemosyne [39], which use a log-based approach to
support failure-atomic updates of persistent data.

None of the existing NVMPL allocators provide a safety
net against programmer-induced memory leaks. Makalu’s
offline garbage collection works as this safety net. NV-
Heaps [15] is the only published NVMPL which offers any-
thing comparable, by providing a reference counting GC.
However, it requires a programmer to distinguish between
a strong and a weak reference to break cycles in a persis-
tent heap. We argue that this is error-prone, especially when
dealing with large and complex data structures. NV-Heaps
is not publicly available and the paper does not indicate that
GC was used as a means of reducing the NVRAM allocation
cost, nor is it clear this could be done.

A plethora of transient memory allocators have been de-
veloped to satisfy the scalability needs of multicore comput-
ing [9, 18, 21, 22]. Our work differs from these as our core
objective is low cost crash-resilient persistent memory man-
agement in addition to multi-core scaling. The next section
does compare our allocator with a commercially used tran-
sient allocator, Hoard [9].

Our offline garbage collection is an adaptation of the con-
servative garbage collection algorithm implemented in the
bdwgc collector [12, 13]. However, garbage collection oc-
curs only offline, when top-level roots are precisely known.
Bdwgc does not support NVRAM allocation, and its free() im-
plementation does not scale on multiprocessors.

13. Evaluation
Although NVRAM is getting closer to becoming widely avail-
able [1, 31], it is not at the moment. Hence, we used Linux
tmpfs[37] to simulate NVRAM during the collection of re-
sults. As files in tmpfs are only backed by DRAM, we used a
process crash and restart to test Makalu’s crash resilience
and restart logic. In order to measure failure consistency
overhead, we did enable full failure consistency mechanisms
such as cache line flushes and memory fences, as we would
have in actual NVRAM systems.

Unless otherwise stated, we compiled all the code used
in this evaluation using the GNU gcc/g++ compiler, version
4.8.4 at optimization level ”-O2”. We ran our experiments on
a 64-bit Ubuntu machine (kernel version 3.13.0-66-generic)
that has 12 GiB of RAM, two Intel Xeon E5-2695 proces-
sors, 6 cores per socket (12 cores total), and hyper-threading
switched off. All results collected were averaged over 6 runs.



13.1 Comparison with Existing Allocators
We compare the allocation speed, throughput, and multi-
threaded performance of our allocator with another persis-
tent allocator, nvm malloc, which is built upon jemalloc
[36]. Although our goal is not to produce the fastest or the
most scalable transient allocator, we compared our alloca-
tor with Hoard(ver3.10)[9], one such popular allocator, to
show that Makalu’s raw performance is comparable despite
the extra failure consistency overhead it has to incur. We also
include in our comparison the following three versions of
bdwgc:

1. An unmodified version (ver7.2) with multi-threaded GC,
thread-local allocation enabled, and explicit deallocation
disabled (bdwgc).

2. Same as (1), but with GC disabled and the default sub-
optimal explicit deallocation enabled (bdwgc-free).

3. A modified version of (1), with a better support for ex-
plicit deallocation and GC disabled (bdwgc-mod).

We use the following often used allocation benchmarks for
comparison.
Larson: This benchmark has often been used to simulate a

multi-threaded long running server [6, 9, 12, 27, 28]. We
configured the benchmark to run for 10 seconds, with t
threads where each thread runs for 104 rounds, allocating
and deallocating 103 64-byte5 objects in each round. It re-
ports the allocation throughput in a given time window in
terms of operations/sec.
Threadtest: This benchmark has been used by [6, 9, 27]
to measure multi-threaded scalability performance of an
allocator. Each thread allocates and deallocates memory
in a tight loop with a configurable amount of work in-
between. For t threads, we ran the benchmark such that each
thread performed 104 rounds of de-/allocation, and 105

t de-
/allocations in each round.
Prod-con: The benchmark simulates applications which
have two mutually exclusive sets of allocating and deallo-
cating threads. Such de-/allocation pattern typically causes
memory blowups [9] or performance degradation in poorly
designed allocators. The benchmark starts an even number
of threads t, and creates t

2 blocking queues [32]. It then as-
signs a producer-consumer thread pair to each queue. An
object is allocated by a producer thread, passed to a con-
sumer thread via a queue, and deallocated there. Each pair
of producer-consumer threads de-/allocates 2×107

t objects
that are 64 bytes in size.
Results: The multi-threaded performance results presented
in figure 7 shows that Makalu performs orders of magni-
tude better than nvm malloc in common memory alloca-
tion patterns presented by above benchmarks. The difference
in performance between Makalu and bdwgc-mod is remark-

5 This is the smallest common allocation size; nvm malloc only supports
allocations in the multiples of 64 bytes

ably thin, making it safe to say that Makalu is only slightly
burdened by failure safety of its metadata. We compare the
failure consistency overhead of Makalu with nvm malloc

in terms of the average number of cache line flushes issued
per thread and present results in figure 8 for all three bench-
marks.

Makalu memory consumption (transient + persistent) is
somewhere between the best and worst case observed and
is comparable to that of nvm malloc across all three bench-
marks. This is especially true as the thread count increases.
We do present full memory consumption results in appendix
A.

Although our evaluation assumes the read/write latency
for NVRAM and DRAM to be comparable (as has often been pre-
dicted), we believe that the advantage shown here of our al-
locator over existing persistent allocators w.r.t. to allocation
speed, multi-core scalability, and failure consistency over-
head will continue to hold even in the case where NVRAM has
greater access latency than DRAM. Our low footprint for core
persistent metadata is the primary reason for our low fail-
ure consistency overhead. This indicates we have a compar-
atively low number of unavoidable reads/writes to NVRAM.

13.2 Recovery and Garbage Collection

SZ MXL TON TREC TGC OV ERoff

MiB ×103 sec ms ms %

200 3.39 1.01 4.18 60.98 6.45
400 6.66 2.00 6.77 133.97 7.05
600 9.84 2.97 7.36 154.94 5.46
800 13.06 3.94 11.73 276.90 7.33

1,024 16.67 5.04 13.66 349.88 7.22
2,048 32.82 10.20 28.23 699.23 7.13
3,072 49.48 15.08 37.96 1,030.57 7.08

Table 2: Makalu offline recovery and GC performance. SZ =
size of allocated heap before crash; MXL = longest pointer
chain explored during GC; TON = online execution time
before the crash; TREC = time taken to recover alloca-
tion metadata and restart offline; TGC = time consumed
by offline GC; and offline overhead, OV ERoff = the ra-
tio of time taken offline to time taken online to fill-up heap,
TREC+TGC

TON
× 100.

We achieve low online failure consistency overhead in
Makalu at the cost of offline recovery and GC in the rare
event of failure. In this section, we quantify this offline cost
using the following benchmark.
Resur: The benchmark allocates SZ MiB of persistent
memory in total by allocating persistent objects of random
size up to half a page before the benchmark crashes abruptly
using process abort. For most environments, this models an
absurdly short interval between failures. With each alloca-
tion, a coin is tossed to either retain the allocated object, in
which case it is made reachable from one of 512 NVRAM re-
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Figure 7: Allocation benchmarks: throughput and multi-threaded performance
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Figure 8: Allocation benchmarks: failure consistency overhead (Makalu vs. nvm malloc)

gion roots (randomly selected) or deallocated immediately.
The retained objects essentially form a collection of linked
lists of variable length rooted at region roots. At the time
of the crash roughly SZ/2 of the memory is reachable in
the persistent heap. Following a crash, Makalu is started in
offline mode. It first recovers its allocation metadata to a
consistent state and then performs a parallel GC.
Results: Table 2 shows that the time to restart/recover meta-
data as well as the time to collect garbage (reported in 4th

and 5th columns respectively) are quite small and grow mod-
estly with the total size of the heap. Offline overhead data
in the 6th column shows that the total time spent in offline
recovery and garbage collection remains a small and some-
what constant fraction of the time spent in online allocation
(3rd column) even as the total size of the allocated memory

(1st column) and the maximum length of the pointer chain
in the heap (2nd column) grows.

We believe that this result greatly enhances the possibility
of Makalu being profitably used in all but most peculiar
cases where applications have very high rates of failure. In
such cases, persistent applications may have more pressing
problems than efficient memory allocation.

13.3 Comparison with NVMPL Default Allocators
In this section, we compare the performance of Makalu to
that of the existing NVMPLs’ default allocators. The default
allocator in Mnemosyne is built upon Hoard [9, 39].

The possibility of in-place persistence of data became
real only recently with the promise of NVRAM in the near fu-
ture. As such, to the best of authors’ knowledge, the earliest
NVMPL work [15, 39] is barely half a decade old and still



immature. Our work fills in a prior omission by providing
a leak-free memory allocator with programmer friendly in-
terface. It aims to promote the development of new NVRAM

applications and a more programmable NVMPL, but it still
somewhat suffers from the status quo of not having stan-
dard real NVRAM application benchmarks. Given the circum-
stances, we use the following three applications, which could
benefit from in-place persistence in the future. Furthermore,
other transient memory management papers [9, 17] have of-
ten made use of some of these benchmarks.
Barnes-Hutt: This benchmark is a multi-threaded N-body
problem solver [8]. The initial set of 100,000 particle po-
sitions and forces are stored in NVRAM, as are the resultant
particle positions and forces after each time-step.
N-queens: It is a lock-based, multi-threaded implementa-
tion of a recursive search algorithm for finding a solution
to the n-queens problem [10]. It uses a pool of workers and
work queues. Both work queues, as well as units of work,
are allocated in NVRAM. A unit of work is essentially a search
frontier to be further explored. Each worker removes a unit
of work from the queue and pushes new work generated back
to the queue. We explored the solution for the 16-queens
problem using a variable number of worker threads. Each
worker has to acquire a lock to add or remove work from the
queue.
Cholesky: It is a multi-threaded, tile-based algorithm for
decomposing a dense matrix into a lower triangular matrix
and its conjugate transpose [20]. Using a variable number of
threads, we allocated a 1000× 1000 input matrix in NVRAM,
decomposed it using tile size 4 × 4 and stored results in
NVRAM as well.

We integrated the same version of the Makalu allocator
with the Mnemosyne and the Atlas library. We shall refer

Barnes-Hutt N-queens Cholesky
sec sec sec

atlas-def 16.44 23.72 19.67
mne-def 18.10 19.69 13.98

Table 3: Single-threaded base performance for Atlas and
Mnemosyne default allocators.

to the Makalu-integrated Mnemosyne and Atlas as mne-
mak and atlas-mak, whereas versions with default alloca-
tors as mne-def and atlas-def respectively. Mnemosyne re-
quires special Linux kernel support and compiler support.
Therefore, Mnemosyne was compiled using Intel compiler
prototype edition 3 with -O2 optimization and results were
obtained on a machine (same architectural specification as
above) running Centos 2.6.32 Linux distro.
Results: Figure 9 compares the default allocators in each
NVMPL to Makalu using speedups obtained on the above
benchmarks. Since Atlas and Mnemosyne data are collected
on two different systems, they should not be compared to
each other. Furthermore, Atlas and Makalu speedups are cal-
culated based on the single-threaded performance of their
respective default allocators on above benchmarks on their
respective machines. Table 3 summarizes these base values.
In all three benchmarks, the Makalu-integrated version of
NVMPL outperforms the default version by orders of mag-
nitude. The result also demonstrates the easy interoperabil-
ity of Makalu with more than a single NVMPL. In order to
isolate and compare the allocation cost, we only concerned
ourselves with avoiding inconsistencies in heap metadata for
these sets of results. We are not concerned with maintaining
the consistency of the data stored in persistent heap itself.
For one such NVMPL, namely Atlas, more extended results
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Figure 9: Comparison of Makalu with NVMPLs’ default allocators. Speedup is computed w.r.t. single threaded performance of
respective NVMPLs’ default allocators. Refer to table 3 for single-threaded base timing values.
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Figure 10: Allocation benchmarks: peak memory consumption
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Figure 11: Comparison of Makalu with the Atlas’ default allocator: full failure consistency enabled. Speedup computed w.r.t.
single threaded performance of Atlas default allocator. Refer to table 4 for the base timing values.

for above benchmarks with full failure consistency mecha-
nisms enabled are presented in appendix A.

14. Conclusions
We have shown that it is possible to build a memory allo-
cator for NVRAM that maintains the standard malloc()/free()
programming model, correctly ensures persistence of meta-
data, and interoperates with multiple NVRAM persistence li-
braries. Surprisingly this is possible at a cost comparable to
transient memory allocators.

Our crucial observation is that by relying on offline
garbage collection during failure recovery, the per alloca-

tion persistence overhead is greatly reduced. A typical small
object persistent allocation does not need to flush any data to
persistent memory since all relevant metadata can effectively
be reconstructed from the object graph during recovery.
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A. Extended Results
A.1 Comparison with Existing Allocators: Memory

Footprints
Figure 10 presents peak memory consumption of allocators
discussed in § 13.1 for benchmarks used in that section.
Makalu’s peak memory consumption is comparable to com-
mercially available transient allocators such as Hoard. For all
three benchmarks, Makalu’s memory consumption is com-
parable to other allocators. nvm malloc had relatively lower
peak memory footprint across all benchmarks.

A.2 Comparison with Atlas Default Allocator: Full
Failure Consistency Enabled

Figure 11 presents results comparing Makalu integrated with
Atlas and Atlas’ default allocator, using benchmarks dis-
cussed in § 13.3. For this set of results, we enabled the full
instrumentation of code, using Atlas’ LLVM compiler [14]
for ensuring failure consistency of user data, in addition to
guaranteeing the absence of memory leaks and consistency
of heap metadata in case of a failure.

Results in figure 11 demonstrate that turning on full fail-
ure consistency support in Atlas hides some of the gains in
allocation speed (that we observed in figure 9) from using
Makalu. Nevertheless, Makalu yields superior performance
to the default Atlas allocator. Barnes-Hutt and Cholesky
use barriers for synchronization among threads whereas N-
queens uses pthread mutexes. Results in figure 11 show
that Makalu-integrated Atlas yields superior performance
for both lock- and non-lock-based code.

Barnes-Hutt N-queens Cholesky
sec sec sec

atlas-def 63.59 59.63 66.16

Table 4: Single-threaded base performance for the Atlas’
default allocator (full failure consistency enabled).
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